
“Computer Science is a
science of abstraction

-creating the right model for
a problem and devising the
appropriate mechanizable

techniques to solve it.”

–A. Aho and J. Ullman

Chapter 4

Introduction to
Problem Solving

In this chapter
 » Introduction
 » Steps for Problem

Solving
 » Algorithm
 » Representation of

Algorithms
 » Flow of Control
 » Verifying Algorithms
 » Comparison of

Algorithm
 » Coding
 » Decomposition

4.1 IntroductIon

Today, computers are all around us. We use them
for doing various tasks in a faster and more accurate
manner. For example, using a computer or smartphone,
we can book train tickets online.

India is a big country and we have an enormous
railway network. Thus, railway reservation is a complex
task. Making reservation involves information about
many aspects, such as details of trains (train type, types
of berth and compartments in each train, their schedule,
etc.), simultaneous booking of tickets by multiple users
and many other related factors.

It is only due to the use of computers that today,
the booking of the train tickets has become easy. Online
booking of train tickets has added to our comfort by
enabling us to book tickets from anywhere, anytime.

We usually use the term computerisation to indicate
the use of computer to develop software in order to
automate any routine human task efficiently. Computers
are used for solving various day-to-day problems
and thus problem solving is an essential skill that a
computer science student should know. It is pertinent
to mention that computers themselves cannot solve a
problem. Precise step-by-step instructions should be
given by us to solve the problem. Thus, the success of a
computer in solving a problem depends on how correctly
and precisely we define the problem, design a solution
(algorithm) and implement the solution (program) using
a programming language. Thus, problem solving is the
process of identifying a problem, developing an algorithm
for the identified problem and finally implementing the
algorithm to develop a computer program.

Ch 4.indd 61 21-May-19 11:45:27 AM

Computer SCienCe – ClaSS xi62

4.2 StepS for problem SolvIng

Suppose while driving, a vehicle starts making a strange
noise. We might not know how to solve the problem
right away. First, we need to identify from where the
noise is coming? In case the problem cannot be solved
by us, then we need to take the vehicle to a mechanic.
The mechanic will analyse the problem to identify the
source of the noise, make a plan about the work to be
done and finally repair the vehicle in order to remove
the noise. From the above example, it is explicit that,

finding the solution to a problem might consist
of multiple steps.

When problems are straightforward and easy,
we can easily find the solution. But a complex
problem requires a methodical approach to
find the right solution. In other words, we have
to apply problem solving techniques. Problem
solving begins with the precise identification of
the problem and ends with a complete working
solution in terms of a program or software.
Key steps required for solving a problem using
a computer are shown in Figure 4.1 and are
discussed in following subsections.

4.2.1 Analysing the problem
It is important to clearly understand a problem before
we begin to find the solution for it. If we are not clear
as to what is to be solved, we may end up developing
a program which may not solve our purpose. Thus,
we need to read and analyse the problem statement
carefully in order to list the principal components of
the problem and decide the core functionalities that
our solution should have. By analysing a problem, we
would be able to figure out what are the inputs that
our program should accept and the outputs that it
should produce.

4.2.2 Developing an Algorithm
It is essential to device a solution before writing a program
code for a given problem. The solution is represented in
natural language and is called an algorithm. We can
imagine an algorithm like a very well-written recipe for

GIGO (Garbage In Garbage
Out)

The correctness of the
output that a computer
gives depends upon the

correctness of input
provided.

Figure 4.1: Steps for problem solving

Algorithm
A set of exact steps

which when followed,
solve the problem
or accomplish the

required task.

Ch 4.indd 62 08-Apr-19 12:34:19 PM

IntroductIon to Problem SolvIng 63

a dish, with clearly defined steps that, if followed, one
will end up preparing the dish.

We start with a tentative solution plan and keep
on refining the algorithm until the algorithm is able
to capture all the aspects of the desired solution. For
a given problem, more than one algorithm is possible
and we have to select the most suitable solution. The
algorithm is discussed in section 4.3.

4.2.3 Coding
After finalising the algorithm, we need to convert the
algorithm into the format which can be understood by
the computer to generate the desired solution. Different
high level programming languages can be used for
writing a program.

It is equally important to record the details of the
coding procedures followed and document the solution.
This is helpful when revisiting the programs at a later
stage. Coding is explained in detail in section 4.8.

4.2.4 Testing and Debugging
The program created should be tested on various
parameters. The program should meet the requirements
of the user. It must respond within the expected time. It
should generate correct output for all possible inputs.
In the presence of syntactical errors, no output will be
obtained. In case the output generated is incorrect, then
the program should be checked for logical errors, if any.

Software industry follows standardised testing
methods like unit or component testing, integration
testing, system testing, and acceptance testing while
developing complex applications. This is to ensure
that the software meets all the business and technical
requirements and works as expected. The errors or
defects found in the testing phases are debugged or
rectified and the program is again tested. This continues
till all the errors are removed from the program.

Once the software application has been developed,
tested and delivered to the user, still problems in terms
of functioning can come up and need to be resolved
from time to time. The maintenance of the solution,
thus, involves fixing the problems faced by the user,

noteS

Ch 4.indd 63 08-Apr-19 12:34:19 PM

Computer SCienCe – ClaSS xi64

answering the queries of the user and even serving the
request for addition or modification of features.

4.3 AlgorIthm

In our day-to-day life we perform activities by following
certain sequence of steps. Examples of activities include
getting ready for school, making breakfast, riding a
bicycle, wearing a tie, solving a puzzle and so on. To
complete each activity, we follow a sequence of steps.
Suppose following are the steps required for an activity
‘riding a bicycle’:

1) remove the bicycle from the stand,
2) sit on the seat of the bicycle,
3) start peddling,
4) use breaks whenever needed and
5) stop on reaching the destination.

Let us now find Greatest Common Divisor (GCD) of two
numbers 45 and 56.
Note: GCD is the largest number that divides both the
given numbers.
Step 1: Find the numbers (divisors) which can divide the
given numbers

 Divisors of 45 are: 1, 3, 5, 9, 15, and 45

 Divisors of 54 are: 1, 2, 3, 6, 9, 18, 27,
 and 54

Step 2: Then find the largest common number from these
two lists.

 Therefore, GCD of 45 and 54 is 9
Hence, it is clear that we need to follow a sequence

of steps to accomplish the task. Such a finite sequence
of steps required to get the desired output is called
an algorithm. It will lead to the desired result in a finite
amount of time, if followed correctly. Algorithm has a
definite beginning and a definite end, and consists of a
finite number of steps.

4.3.1 Why do we need an Algorithm?
A programmer writes a program to instruct the computer
to do certain tasks as desired. The computer then follows
the steps written in the program code. Therefore, the
programmer first prepares a roadmap of the program
to be written, before actually writing the code. Without

The origin of the term
Algorithm is traced to

Persian astronomer and
mathematician, Abu

Abdullah Muhammad
ibn Musa Al-Khwarizmi

(c. 850 AD) as the
Latin translation of Al-
Khwarizmi was called

‘Algorithmi’.

Activity 4.1

What sequence of
steps will you follow to
compute the LCM of
two numbers?

Ch 4.indd 64 08-Apr-19 12:34:19 PM

IntroductIon to Problem SolvIng 65

a roadmap, the programmer may not be able to clearly
visualise the instructions to be written and may end up
developing a program which may not work as expected.

Such a roadmap is nothing but the algorithm which is
the building block of a computer program. For example,
searching using a search engine, sending a message,
finding a word in a document, booking a taxi through
an app, performing online banking, playing computer
games, all are based on algorithms.

Writing an algorithm is mostly considered as a first
step to programming. Once we have an algorithm to
solve a problem, we can write the computer program
for giving instructions to the computer in high level
language. If the algorithm is correct, computer will run
the program correctly, every time. So, the purpose of
using an algorithm is to increase the reliability, accuracy
and efficiency of obtaining solutions.
(A) Characteristics of a good algorithm

• Precision — the steps are precisely stated or defined.

• Uniqueness — results of each step are uniquely
defined and only depend on the input and the result
of the preceding steps.

• Finiteness — the algorithm always stops after a
finite number of steps.

• Input — the algorithm receives some input.

• Output — the algorithm produces some output.

(B) While writing an algorithm, it is required to
 clearly identify the following:

• The input to be taken from the user

• Processing or computation to be performed to get
the desired result

• The output desired by the user

4.4 repreSentAtIon of AlgorIthmS

Using their algorithmic thinking skills, the software
designers or programmers analyse the problem and
identify the logical steps that need to be followed to reach
a solution. Once the steps are identified, the need is to

noteS

Ch 4.indd 65 08-Apr-19 12:34:19 PM

Computer SCienCe – ClaSS xi66

Table 4.1 Shapes or symbols to draw flow charts
Flowchart symbol Function Description

Start/End Also called “Terminator” symbol. It indicates where the

flow starts and ends.

Process Also called “Action Symbol,” it represents a process,

action, or a single step.

Decision A decision or branching point, usually a yes/no or true/
false question is asked, and based on the answer, the path
gets split into two branches.

Input/Output Also called data symbol, this parallelogram shape is used

to input or output data

 Arrow Connector to show order of flow between shapes.

write down these steps along with the required input
and desired output. There are two common methods of
representing an algorithm —flowchart and pseudocode.
Either of the methods can be used to represent an
algorithm while keeping in mind the following:

• it showcases the logic of the problem solution,
excluding any implementational details

• it clearly reveals the flow of control during execution
of the program

4.4.1 Flowchart — Visual Representation of Algorithms
A flowchart is a visual representation of an algorithm.
A flowchart is a diagram made up of boxes, diamonds
and other shapes, connected by arrows. Each shape
represents a step of the solution process and the arrow
represents the order or link among the steps.

There are standardised symbols to draw flowcharts.
Some are given in Table 4.1.

Example 4.1: Write an algorithm to find the square of a
number.

Before developing the algorithm, let us first identify the
input, process and output:

• Input: Number whose square is required
• Process: Multiply the number by itself to get

its square
• Output: Square of the number

Algorithm to find square of a number.
 Step 1: Input a number and store it to num
 Step 2: Compute num * num and store it in square
 Step 3: Print square

Ch 4.indd 66 21-May-19 4:35:17 PM

IntroductIon to Problem SolvIng 67

The algorithm to find square of a number can be
represented pictorially using flowchart as shown in
Figure 4.2.

Activity 4.2

Draw a flowchart
that represents the
attainment of your
career goal.

What will happen if an
algorithm does not stop
after a finite number
of steps?

Think and Reflect

Figure 4.2: Flowchart to calculate square of a
number

Example 4.2: Draw a flowchart to solve the problem of
a non-functioning light bulb

Figure 4.3: Flowchart to solve the problem of a non-functioning
light bulb

Ch 4.indd 67 08-Apr-19 12:34:19 PM

Computer SCienCe – ClaSS xi68

4.4.2 Pseudocode

A pseudocode (pronounced Soo-doh-kohd) is another
way of representing an algorithm. It is considered as a
non-formal language that helps programmers to write
algorithm. It is a detailed description of instructions
that a computer must follow in a particular order. It is
intended for human reading and cannot be executed
directly by the computer. No specific standard for writing
a pseudocode exists. The word “pseudo” means “not
real,” so “pseudocode” means “not real code”. Following
are some of the frequently used keywords while writing
pseudocode:

• INPUT
• COMPUTE
• PRINT
• INCREMENT
• DECREMENT
• IF/ELSE
• WHILE
• TRUE/FALSE

Example 4.3: Write an algorithm to display the
sum of two numbers entered by
user, using both pseudocode and
flowchart.

Pseudocode for the sum of two numbers will be:
 INPUT num1
 INPUT num2
 COMPUTE Result = num1 + num2
 PRINT Result

The flowchart for this algorithms is given in Figure 4.4.

Result

Print Result

Figure 4.4: Flowchart to display sum of two numbers

Activity 4.3

Write a pseudocode for
creating a scoreboard
for a hockey match.

Ch 4.indd 68 08-Apr-19 12:34:19 PM

IntroductIon to Problem SolvIng 69

Example 4.4: Write an algorithm to calculate
area and perimeter of a rectangle,
using both pseudocode and flowchart.

Pseudocode for calculating area and perimeter of
a rectangle.

 INPUT length
 INPUT breadth
 COMPUTE Area = length * breadth
 PRINT Area
 COMPUTE Perim = 2 * (length + breadth)
 PRINT Perim

The flowchart for this algorithm is given in Figure 4.5.

(A) Benefits of Pseudocode
Before writing codes in a high level language, a
pseudocode of a program helps in representing the
basic functionality of the intended program. By
writing the code first in a human readable language,
the programmer safeguards against leaving out any
important step. Besides, for non-programmers, actual
programs are difficult to read and understand, but
pseudocode helps them to review the steps to confirm
that the proposed implementation is going to achieve
the desire output.

Figure 4.5: Flowchart to
calculate area and perimeter of a rectangle

noteS

Ch 4.indd 69 08-Apr-19 12:34:20 PM

Computer SCienCe – ClaSS xi70

4.5 flow of control

The flow of control depicts the flow of events as
represented in the flow chart. The events can flow in
a sequence, or on branch based on a decision or even
repeat some part for a finite number of times.

4.5.1 Sequence

If we look at the examples 4.3 and 4.4, the statements
are executed one after another, i.e., in a sequence.
Such algorithms where all the steps are executed one
after the other are said to execute in sequence. However,
statements in an algorithm may not always execute in
a sequence. We may sometimes require the algorithm
to either do some routine tasks in a repeated manner
or behave differently depending on the outcomes of
previous steps. In this section, we are going to learn
how to write algorithms for such situations.

4.5.2 Selection

Consider the map of a neighbourhood as shown in
Figure 4.6. Let us assume that the pink building with
the red roof is the school; the yellow painted house at
the far end of the map is a house.

Figure 4.6: Decision making in real life

Can you list some of the
routine activities in your
daily life where decision
making is involved?

Think and Reflect

Ch 4.indd 70 08-Apr-19 12:34:20 PM

IntroductIon to Problem SolvIng 71

With reference to Figure 4.6, let us answer the following
questions :

• Is there a predefined route for walking from home
to school?

• Can we have a different route while coming back?
As seen from the map, there can be multiple routes

between home and school. We might take the shortest
route in the morning. But while coming back home
in the afternoon, the shortest route might have heavy
traffic. Therefore, we could take another route with
less traffic. Hence, the above problem involves some
decision-making based on certain conditions.
Let us look at some other examples where decision
making is dependent on certain conditions. For example,
(i) Checking eligibility for voting.
 Depending on their age, a person will either be allowed
to vote or not allowed to vote:

• If age is greater than or equal to 18, the person is
eligible to vote

• If age is less than 18, the person is not eligible
to vote

(ii) Let us consider another example
 If a student is 8 years old and the student likes Maths
 put the student in Group A
 Otherwise
 Put the student in Group B

In which group will these students go as per the
above condition?
 Outcome

• 8-year-old Ravi who does not like Maths: Group B
• 8-year-old Priti who likes Maths: Group A
• 7-year-old Anish who likes Maths: Group B

In these examples, any one of the alternatives is selected
based on the outcome of a condition. Conditionals are
used to check possibilities. The program checks one or
more conditions and perform operations (sequence of
actions) depending on true or false value of the condition.
These true or false values are called binary values.

noteS

Ch 4.indd 71 08-Apr-19 12:34:20 PM

Computer SCienCe – ClaSS xi72

Conditionals are written in the algorithm as
follows:
If <condition> then
 steps to be taken when the
condition is true/fulfilled
There are situations where we also need to
take action when the condition is not fulfilled
(Figure 4.7). To represent that, we can write:
If <condition> is true then

 steps to be taken when the condition is
true/fulfilled
otherwise
 steps to be taken when the condition is
false/not fulfilled

In programming languages, 'otherwise' is represented
using Else keyword. Hence, a true/false conditional is
written using if-else block in actual programs.
Example 4.5: Let us write an algorithm to check whether

a number is odd or even.
• Input: Any number
• Process: Check whether the number is even or not
• Output: Message “Even” or “Odd”

Pseudocode of the algorithm can be written as follows:
PRINT "Enter the Number"
INPUT number
IF number MOD 2 == 0 THEN
 PRINT "Number is Even"
ELSE
 PRINT "Number is Odd"

The flowchart representation of the algorithm in shown
in Figure 4.8.

Figure 4.8: Flowchart to check whether a number is even or odd

Figure 4.7: Actions depending on true or
false of a condition

Ch 4.indd 72 08-Apr-19 12:34:20 PM

IntroductIon to Problem SolvIng 73

Example 4.6: Let us write a pseudocode and draw a
flowchart where multiple conditions are
checked to categorise a person as either
child (<13), teenager (>=13 but <20) or
adult (>=20),based on age specified:

• Input: Age
• Process: Check Age as per the given criteria
• Output: Print either “Child”, “Teenager”, “Adult”

Pseudocode is as follows:
INPUT Age
IF Age < 13 THEN
 PRINT "Child"
 ELSE IF Age < 20 THEN
 PRINT "Teenager"
 ELSE
 PRINT "Adult"

The flowchart representation of the algorithm in shown
in Figure 4.9

Example 4.7: Algorithm for a card game called “Dragons
and Wizards”.

Make two teams DRAGONS and WIZARDS
The rules for the game are as follows:

• If the card drawn is a diamond or a club, Team
DRAGONS gets a point

• If the card drawn is a heart which is a number,
Team WIZARDS gets a point

noteS

Figure 4.9: Flowchart to check multiple conditions

Ch 4.indd 73 08-Apr-19 12:34:20 PM

Computer SCienCe – ClaSS xi74

• If the card drawn is a heart that is not a number,
Team DRAGONS gets a point

• For any other card, Team WIZARDS gets a point
• The team with highest point is the winner

Let us identify the following for a card:
Input: shape, value
Process: Increment in respective team scores by one
based on the outcome of the card drawn, as defined in
the rules.
Output: Winning team
Now let us write the conditionals for this game:

IF (shape is diamond) OR (shape is club)
 Team DRAGONS gets a point
ELSE IF (shape is heart) AND (value is
number)
 Team WIZARDS gets a point
ELSE IF (shape is heart) AND (value is not a
number)
 Team DRAGONS gets a point
ELSE
 Team WIZARDS gets a point

The pseudocode for the program can be as follows:
Note: Dpoint (for Dragon) and Wpoint (for Wizard) store
points scored by the respective teams.

INPUT shape
INPUT value
SET Dpoint = 0, Wpoint = 0
IF (shape is diamond) OR (shape is club) THEN
 INCREMENT Dpoint
ELSE IF (shape is heart) AND (value is
number)THEN
 INCREMENT Wpoint
ELSE IF (shape is heart) AND (value is not a
number)THEN
 INCREMENT Dpoint
ELSE
 INCREMENT Wpoint
END IF
IF Dpoint > Wpoint THEN
 PRINT "Dragon team is the winner"
ELSE
 PRINT "Wizard team is the winner"

4.5.3 Repetition
When giving directions to go someplace, we say something
like, “walk 50 steps then turn right”. Or “Walk till the next

noteS

Ch 4.indd 74 08-Apr-19 12:34:20 PM

IntroductIon to Problem SolvIng 75

crossing then take a right turn”. Consider some other
examples like:

• Clap your hands five times
• Walk 10 steps ahead
• Jump on the spot till you get tired
These are the kind of statements we use, when

we want something to be done repeatedly, for a given
number of times. Likewise, suppose 10 cards need to
be withdrawn in the previous card game (example 4.7),
then the pseudocode needs to be repeated 10 times to
decide the winner. All these are examples of repetitions.
In programming, repetition is also known as iteration
or loop. A loop in an algorithm means execution of
some program statements repeatedly till some specified
condition is satisfied.
Example 4.8: Write pseudocode and draw a flowchart to

accept 5 numbers and find their average.
The flowchart representation is shown in Figure 4.10.
Pseudocode will be as follows:
Step 1: SET count = 0, sum = 0
Step 2: WHILE count < 5 , REPEAT steps 3 to 5
Step 3: INPUT a number to num
Step 4: sum = sum + num
Step 5: count = count + 1
Step 6: COMPUTE average = sum/5
Step 7: PRINT average

In example 4.8, a
counter called “count”
keeps track of number
of times the loop
has been repeated.
After every iterationof
the loop, the value
of count is incremented
by 1 until it performs
the set number of
repetitions, given in
the iteration condition.

There are situations
when we are not aware
beforehand about the
number of times a set

Can you list some of
the routine activities
in your daily life where
repetition or iteration is
involved?

Think and Reflect

Figure 4.10: Flowchart to Calculate the Average of 5 Numbers

Ch 4.indd 75 08-Apr-19 12:34:21 PM

Computer SCienCe – ClaSS xi76

of statements need to be repeated. Such requirements
of unknown number of repetitions are handled using
WHILE construct.
Example 4.9: Write pseudocode and draw flowchart to

accept numbers till the user enters 0 and
then find their average.

Pseudocode is as follows:
Step 1: SET count = 0, sum = 0
Step 2: INPUT num
Step 3: WHILE num is not equal to 0, REPEAT Steps 4 to 6
Step 4: sum = sum + num
Step 5: count = count + 1
Step 6: INPUT num
Step 7: COMPUTE average = sum/count
Step 8: PRINT average
The flowchart representation is shown in Figure 4.11.

In this example, we do not know how many numbers
a user is going to enter before entering 0. This is handled
by checking the condition repeatedly till the condition
becomes false.

Figure 4.11: Flowchart to accept numbers till the user enters 0

Activity 4.4

Let us answer the
following questions
using the pesudocode
given in example 4.9:
1) What will the sum

when the input are 6,
7, 4, 8, 2, 5, 0, 3, 1.

2) What will be the
value of count?

3) Why did we use the
input statement to
enter num twice?

4) Why did we divide
sum by count?

5) Can there be any
other approach?

Ch 4.indd 76 08-Apr-19 12:34:21 PM

IntroductIon to Problem SolvIng 77

4.6 Verifying Algorithms

Can you imagine what would happen if a banking software
does not work correctly? Suppose functioning of the online
money transfer module is not programmed correctly, and
it credits into the account only half the amount transacted!
What happens if the account is debited instead of being
credited. Such a faulty software will mess up the working
of the complete system and cause havoc! Today software
are used in even more critical services — like in the
medical field or in space shuttles. Such software needs to
work correctly in every situation. Therefore, the software
designer should make sure that the functioning of all the
components are defined correctly, checked and verified in
every possible way.

When we were told that the formula for the sum of
first N natural numbers is N(N+1)

2
 , how did we verify it?

Well, we can check this for small numbers, for which
we can manually calculate the sum. Let N = 6, then the
sum is 1 + 2 + 3 + 4 + 5 + 6 = 21

Using formula we get sum = 6x(6+1)
2

We can try with some more numbers this way to
ensure that the formula works correctly.

In the same way, when we have written an algorithm,
we want to verify that it is working as expected. To verify,
we have to take different input values and go through
all the steps of the algorithm to yield the desired output
for each input value and may modify or improve as per
the need. The method of taking an input and running
through the steps of the algorithm is sometimes called
dry run. Such a dry run will help us to:

1. Identify any incorrect steps in the algorithm
2. Figure out missing details or specifics in the

algorithm
It is important to decide the type of input value to

be used for the simulation. In case all possible input
values are not tested, then the program will fail. What if
there is some other case for which it does not work? Let
us look at some examples.

Write an algorithm to calculate the time taken to go
from place A to C (T_total) via B where time taken to

Why is verification of
algorithm an important
step in problem solving?

Think and Reflect

Activity 4.5

Write an algorithm
to take as input the
measurement of length
and breadth in feet and
inches (e.g., 5 ft 6 inch)
of a rectangular shape
and calculate its area
and perimeter.

Ch 4.indd 77 21-May-19 11:51:30 AM

Computer SCienCe – ClaSS xi78

go from A to B (T1) and B to C (T2) are given. That is,
we want the algorithm to add time given in hours and
minutes. One way to write the algorithm is:

PRINT value for T1
INPUT hh1
INPUT mm1
PRINT value for T2
INPUT hh2
INPUT mm2
hh_total = hh1 + hh2 (Add hours)
mm_total = mm1 + mm2 (Add mins)
Print T_total as hh_total, mm_total

Now let us verify. Suppose the first example we take
is T1 = 5 hrs 20 mins and T2 = 7 hrs 30 mins. On
dry run, we get the result 12 hrs and 50 mins. This
looks fine.

Now let us take another example where T1 = 4 hrs 50
mins and T2 = 2 hrs 20 mins, and we end up getting the
result as 6 hrs 70 mins which is not how we measure
time. The result should have been 7 hrs 10 mins.

With this second example we realise that our
algorithm will work only when mm1 + mm2 (mm_total)
< 60. For all other cases, it will give us output not the
way we want. When mm_total >= 60, the algorithm should
increase the sum of hours (hh_total) by 1 and reduce
mm_total by 60, i.e., (mm_total - 60). So the modified
algorithm will be:

PRINT value for T1
INPUT hh1
INPUT mm1
PRINT value for T2
INPUT hh2
INPUT mm2
hh_total = hh1 + hh2 (Add hours)
mm_total = mm1 + mm2 (Add mins)
hh_total = hh1 + hh2 (Add hours)
mm_total = mm1 + mm2 (Add mins)
IF (mm_total >= 60) THEN
 hh_total = hh_total + 1
 mm_total = mm_total - 60
PRINT T_total as hh_total, mm_total

Now we can simulate through algorithm for T1 = 4
hrs 50 mins and T2 = 2 hrs 20 mins, and get T_total
= 7 hrs and 10 mins, which means the algorithm is
working correctly.

Notes

Ch 4.indd 78 21-May-19 11:55:04 AM

IntroductIon to Problem SolvIng 79

Suppose we develop some software without verifying
the underlying algorithm and if there are errors in
the algorithm, then the software developed will not
run. Hence, it is important to verify an algorithm
since the effort required to catch and fix a mistake
is minimal.

4.7 compArISon of AlgorIthm

There can be more than one approach to solve a problem
using computer and hence we can have more than one
algorithm. Then one may ask which algorithm should
be used?

Consider the problem of finding whether a given
number is prime or not. Prime numbers are of great
importance in computer science as they find application
in databases, security, file compression or decompression,
modulation or demodulation, etc. There can be four
different ways to write algorithms to check whether a
given number is prime or not as shown below:

(i) Starting with divisor 2, divide the given
number (dividend) and check if there are any
factors. Increase the divisor in each iteration
and repeat the previous steps as long as
divisor < dividend. If there is a factor, then the
given number is not prime

(ii) In (i), instead of testing all the numbers till the
dividend, only test up to half of the given value
(dividend) because the divisor can not be more
than half of the dividend

(iii) In method (i), only test up to the square root of
the dividend (numbers)

(iv) Given a prior list of prime number till 100, divide
the given number by each number in the list. If
not divisible by any number, then the number is
a prime else it is not prime

All these four methods can check if a given number
is prime or not. Now the question is which of these
methods is better or efficient?

Algorithm (i) requires large number of calculations
(means more processing time) as it checks for all the
numbers as long as the divisor is less than the number.
If the given number is large, this method will take more
time to give the output.

noteS

Ch 4.indd 79 08-Apr-19 12:34:21 PM

Computer SCienCe – ClaSS xi80

Algorithm (ii) is more efficient than (i) as it checks for
divisibility till half the number, and thus it reduces the
time for computation of the prime number. Algorithm
(iii) is even more efficient as it checks for divisibility till
square root of the number, thereby further reducing the
time taken.

As algorithm (iv) uses only the prime numbers smaller
than the given number for divisibility, it further reduces
the calculations. But in this method we require to store
the list of prime numbers first. Thus it takes additional
memory even though it requires lesser calculations.

Hence, algorithms can be compared and analysed
on the basis of the amount of processing time they
need to run and the amount of memory that is needed
to execute the algorithm. These are termed as time
complexity and space complexity, respectively. The
choice of an algorithm over another is done depending
on how efficient they are in terms of proecssing time
required (time complexity) and the memory they utilise
(space complexity).

4.8 codIng

Once an algorithm is finalised, it should be coded in
a high-level programming language as selected by the
programmer. The ordered set of instructions are written
in that programming language by following its syntax.
Syntax is the set of rules or grammar that governs the
formulation of the statements in the language, such as
spellings, order of words, punctuation, etc.

The machine language or low level language
consisting of 0s and 1s only is the ideal way to write a
computer program. Programs written using binary digits
are directly understood by the computer hardware,
but they are difficult to deal with and comprehend
by humans. This led to the invention of high-level
languages which are close to natural languages and are
easier to read, write, and maintain, but are not directly
understood by the computer hardware. An advantage of
using high-level languages is that they are portable, i.e.,
they can run on different types of computers with little

The spirit of
problem solving by
decomposition is to

‘divide and conquer’.
In words of Howard

Raffa, a famous
mathematician:

“Decompose a complex
problem into simpler

problems get one’s thinking
straight in these simpler

problems, put these
analyses together with

logical glue”

Ch 4.indd 80 08-Apr-19 12:34:21 PM

IntroductIon to Problem SolvIng 81

or no modifications. Low-level programs can run on
only one kind of computer and have to be rewritten in
order to run on another type of system. A wide variety of
high-level languages, such as FORTRAN, C, C++, Java,
Python, etc., exist.

A program written in a high-level language is called
source code. We need to translate the source code into
machine language using a compiler or an interpreter,
so that it can be understood by the computer. We have
learnt about the compiler and interpreter in Chapter 1.

There are multiple programming languages available
and choosing the one suitable for our requirements
requires us to consider many factors. It depends on
the platform (OS) where the program will run. We need
to decide whether the application would be a desktop
application, a mobile application or a web application.
Desktop and mobile applications are generally developed
for a particular operating system and for certain
hardware whereas the web applications are accessed
in different devices using web browsers and may use
resources available over cloud.

Besides, programs are developed not only to work on
a computer, mobile or a web browser, but it may also be
written for embedded systems like digital watch, mp3
players, traffic signals or vehicles, medical equipments
and other smart devices. In such cases, we have to look
for other specialised programming tools or sometimes
write programs in assembly languages.

4.9 decompoSItIon

Sometimes a problem may be complex, that is, its
solution is not directly derivable. In such cases, we need
to decompose it into simpler parts. Let us look at the
Railway reservation system we talked about earlier. The
complex task of designing a good railway reservation
system is seen as designing the different components of
the system and then making them work with each other
effectively.

The basic idea of solving a complex problem by
decomposition is to 'decompose' or break down a
complex problem into smaller sub problems as shown

noteS

Ch 4.indd 81 08-Apr-19 12:34:21 PM

Computer SCienCe – ClaSS xi82

in Figure 4.12. These sub problems are relatively easier
to solve than the original problem. Finally, the sub-
problems are combined in a logical way to obtain the
solution for the bigger, main problem.

Breaking down a complex problem into sub problems
also means that each sub problem can be examined in
detail. Each sub problem can be solved independently
and by different persons (or teams). Having different
teams working on different sub problems can also
be advantageous because specific sub problems
can be assigned to teams who are experts in solving
such problems.

There are many real life problems which can
be solved using decomposition. Examples include
solving problems in mathematics and science, events
management in school, weather forecasting, delivery
management system, etc.

Once the individual sub problems are solved, it is
necessary to test them for their correctness and integrate
them to get the complete solution.

SummAry

• An algorithm is defined as a step-by-step procedure
designed to perform an operation which will lead to
the desired result, if followed correctly.

• Algorithms have a definite beginning and a definite
end, and a finite number of steps.

• A good algorithm, which is precise, unique and
finite, receives input and produces an output.

Figure 4.12: Railway reservation system

Trains' information
— days, timings,

stations, classes and
births

Reservation information
— booking open or close,
available or waiting List,
cancellation and refund

Information about
staff, security,

railway
infrastructure

Billing service Other details about
railwaysFood service

Ch 4.indd 82 08-Apr-19 12:34:21 PM

IntroductIon to Problem SolvIng 83

exercISe

 1. Write pseudocode that reads two numbers and
divide one by another and display the quotient.

 2. Two friends decide who gets the last slice of a cake
by flipping a coin five times. The first person to
win three flips wins the cake. An input of 1 means
player 1 wins a flip, and a 2 means player 2 wins
a flip. Design an algorithm to determine who takes
the cake?

 3. Write the pseudocode to print all multiples of 5
between 10 and 25 (including both 10 and 25).

 4. Give an example of a loop that is to be executed a
certain number of times.

 5. Suppose you are collecting money for something.
You need ` 200 in all. You ask your parents, uncles
and aunts as well as grandparents. Different people
may give either ̀ 10, ̀ 20 or even ̀ 50. You will collect
till the total becomes 200. Write the algorithm.

 6. Write the pseudocode to print the bill depending
upon the price and quantity of an item. Also print

noteS• In order to write effective algorithms we need to
identify the input, the process to be followed and
the desired output.

• A flowchart is a type of diagram that represents
the algorithm graphically using boxes of various
kinds, in an order connected by arrows.

• An algorithm where all the steps are executed
one after the other is said to execute in sequence.

• Decision making involves selection of one of the
alternatives based on outcome of a condition.

• An algorithm may have a certain set of steps,
which are repeating for a finite number of times,
such an algorithm is said to be iterative.

• There can be more than one approach to solve a
problem and hence we can have more than one
algorithm for a particular problem.

• The choice of algorithm should be made on the
basis of time and space complexity.

Ch 4.indd 83 08-Apr-19 12:34:21 PM

Computer SCienCe – ClaSS xi84

Bill GST, which is the bill after adding 5% of tax in
the total bill.

 7. Write pseudocode that will perform the following:

a) Read the marks of three subjects: Computer
Science, Mathematics and Physics, out of 100

b) Calculate the aggregate marks

c) Calculate the percentage of marks

 8. Write an algorithm to find the greatest among two
different numbers entered by the user.

 9. Write an algorithm that performs the following:
 Ask a user to enter a number. If the number is

between 5 and 15, write the word GREEN. If the
number is between 15 and 25, write the word BLUE.
if the number is between 25 and 35, write the word
ORANGE. If it is any other number, write that ALL
COLOURS ARE BEAUTIFUL.

 10. Write an algorithm that accepts four numbers as
input and find the largest and smallest of them.

 11. Write an algorithm to display the total water bill charges
of the month depending upon the number of units
consumed by the customer as per the following criteria:
• for the first 100 units @ 5 per unit
• for next 150 units @ 10 per unit
• more than 250 units @ 20 per unit

Also add meter charges of 75 per month to calculate
the total water bill .

 12. What are conditionals? When they are required in a
program?

 13. Match the pairs

Flowchart Symbol Functions

Flow of Control

Process Step

Start/Stop of the
Process

noteS

Ch 4.indd 84 08-Apr-19 12:34:21 PM

IntroductIon to Problem SolvIng 85

noteS

Data

 Decision Making

 14. Following is an algorithm for going to school or
college. Can you suggest improvements in this to
include other options?
Reach_School_Algorithm

a) Wake up
b) Get ready
c) Take lunch box
d) Take bus
e) Get off the bus
f) Reach school or college

 15. Write a pseudocode to calculate the factorial
of a number (Hint: Factorial of 5, written as
5! =)× × × ×5 4 3 2 1 .

 16. Draw a flowchart to check whether a given number
is an Armstrong number. An Armstrong number of
three digits is an integer such that the sum of the
cubes of its digits is equal to the number itself. For
example, 371 is an Armstrong number since 3**3 +
7**3 + 1**3 = 371.

 17. Following is an algorithm to classify numbers as
“Single Digit”, “Double Digit” or “Big”.
Classify_Numbers_Algo
INPUT Number
IF Number < 9
 "Single Digit"
Else If Number < 99
 "Double Digit"
Else
 "Big"
Verify for (5, 9, 47, 99, 100 200) and correct the
algorithm if required

 18. For some calculations, we want an algorithm that
accepts only positive integers upto 100.

Ch 4.indd 85 08-Apr-19 12:34:21 PM

Computer SCienCe – ClaSS xi86

Accept_1to100_Algo
INPUT Number
IF (0<= Number) AND (Number <= 100)
 ACCEPT
Else
 REJECT

a) On what values will this algorithm fail?
b) Can you improve the algorithm?

noteS

Ch 4.indd 86 08-Apr-19 12:34:21 PM

